

Treating Neurological Disorders Caused by Opioid Addiction – Targeting the μ Opioid Receptor

Overview

Yan Zhang, PhD, Professor, Department of Medicinal Chemistry, Virginia Commonwealth University, a recognized expert in the study of drug design and development to treat various types of diseases, has developed novel compounds to treat neurological disorders related to opioid addiction.

Drug use disorder is a growing global epidemic. In 2018, over 72,000 people died in the US alone from opioid overdose. The two current methods for treating opioid addiction include detoxification and maintenance therapy using opioid receptor antagonists, such as naloxone and naltrexone. While effective, naloxone and naltrexone have the potential to cause hepatotoxicity, cardiovascular and pulmonary problems at higher doses.

The analgesic function and addiction/abuse liability of many clinically available opiates are due to their interaction with the μ opioid receptor (MOR). A number of MOR selective antagonists and partial agonists have been used for the treatment of opioid abuse and addiction.

Dr. Zhang has designed and synthesized a number of highly selective and potent opioid antagonists. The first compound identified as a peripherally selective MOR antagonist, NAP. Since NAP's discovery, generations of new compounds have been studied; NAQ, NAN, and NFP. *In vitro* competition assays showed that NAQ, NAN, and NFP have superior selectivity for the MOR over existing compounds. *In vivo* withdrawal studies showed that NAQ, NAN, and NFP produced significantly less withdrawal symptoms compared to naloxone at similar doses. The findings suggest that these compounds may serve as a lead compound to develop novel dual selective ligands for treating opioid addiction and abuse.

Key features

- Treatment of neurological disorders

 Drug abuse
 Drug addiction
 Alcoholism
 Neurological disorders related to opioid receptor functions
- Fewer withdrawal symptoms than current treatment
- Higher affinity and specificity for MOR

C o m m o

Inventors

Yan Zhang, Ph.D. Professor Medicinal Chemistry

Contact

Magdalena Morgan, Ph.D. Director of Licensing VCU Innovation Gateway <u>mkmorgan@vcu.edu</u> (804) 827-6095

Patent status:

Patent pending and issued: U.S. and foreign rights are available.

License status:

This technology is available for licensing to industry for further development and commercialization.

Category: Biomedical

VCU Tech #: ZHA-09-004F, ZHA-13-106F, ZHA-

16-064F, ZHA-16-065F, ZHA-18-094F

In vitro and in vivo data available

Virginia

VCU Innovation Gateway • PO Box 980568 • BioTech One, Suite 3000 • 800 E Leigh St • Richmond, Virginia 23219 Phone (804) 828-5188 • Fax (804) 827-0087 • http://www.research.vcu.edu/ott

Patent estate

Selective, non-peptide antagonists for the MOR and their methods of use are protected by an extensive international patent estate. Issued patents and patent applications ensure patent protection until 2030 at a minimum with the potential for additional protection. The novel compound, NFP, is the newest formulation with the potential for 20+ years of patent coverage.

The patent estate claims:

- Formulation of compounds and close analogs
- Methods of use for treating conditions related to addiction in which MOR is involved

Some of the patent family portfolio includes:

- 8,772,308
- 8,980,908
- 16/301,765
- ✤ 16/306,232

Additional information about the patent estate is available upon request.

Pharmacology Data Summary

Compound			NAQ	NFP	NAN
In vitro Pharmacolo	gy Studies				
Binding Affinity Ki (nM) ± SEM	MOR		0.55 ± 0.15 nM	0.36 ± 0.02 nM	0.23 ± 0.02 nM
Function potency and efficacy ³⁵ S-GTP[γS]-	MOR	Potency EC₅₀, nM	4.36 ± 0.73 nM	1.20 ± 0.19 nM	3.9 ± 2.3 nM
Binding		Efficacy (% max of DAMGO)	15.83 ± 2.53	34.97 ± 3.07	19.1 ± 3.3
In vivo Pharmacolo	gy Studies				
Tail flick assay (mice, single dose)			No anti-nociceptive effect up to 100 mg/kg.	The percentage maximum possible effect (%MPE) of NFP was 6.2 ± 2.4% compared with 95.5 ± 4.5% of morphine (both at 10 mg/kg).	The percentage maximum possible effect (%MPE) of NAN (10 mg/kg) was 5.0 ± 2.5% compared to 94.9 ± 5.1% for morphine (10 mg/kg).

Virginia Commonwealth University

VCU Innovation Gateway • PO Box 980568 • BioTech One, Suite 3000 • 800 E Leigh St • Richmond, Virginia 23219 Phone (804) 828-5188 • Fax (804) 827-0087 • http://www.research.vcu.edu/ott

Innovation Gateway

Treating Neurological Disorders Caused by Opioid Addiction – Targeting the μ Opioid Receptor

Tail flick assay (mice, dose response)	The AD ₅₀ of NAQ	Blockage effect to	The AD ₅₀ of NAN
	was determined as	the antinociception	was determined as
	0.45 (0.27-0.78)	of morphine at the	2.39 (0.46-12.47)
	mg/kg (95% CL)	doses of 4 mg/kg	mg/kg (95% CL)
		and shown more	
		significant	
		antinociception	
		block effect at the	
		doses of 8 mg/kg	
		and 10 mg/kg. AD ₅₀	
		value of 2.82 (1.34-	
		5.94) mg/kg with	
		95% CL.	
Withdraw study (morphine-pelleted mice)	No significant	Cause no obvious	NAN at a dose of
	precipitation of	wet dog shakes,	50 mg/kg produce
	withdraw	jumping and paw	significantly less
	syndromes up to	tremors compared	wet-dog shakes
	100 mg/kg.	with well-known	and paw tremors
	NAQ (10 mg/kg)	opioid antagonist,	than naltrexone a
	also significantly	naloxone, even the	a dose of 1 mg/kg
	decreased the	dose up to 50	NAN at a dose of 2
	hyper-locomotion	mg/kg.	mg/kg produced
	induced by acute	NFP did not	significantly less
	, morphine without	develop tolerance	escape jumps that
	inducing any	at 10 mg/kg of	naltrexone at 1
	vertical jumps.	morphine likely	mg/kg.
		represents a	
		combination of the	
		direct antagonistic	
		effects of NFP in	
		combination with	
		its ability to	
		attenuate the	
		development of	
		tolerance.	
РК		·	·
Caco-2 bidirectional transport assay, PDR =	1.2	8.85	ND
P _{app, B-A} /P _{app, A-B}	Apparently not a	As a moderate	
	Pgp substrate	potency Pgp	
		substrate	
GPCRs and ion channels screening	No significant	No significant	No significant
	binding to other	binding to other	binding to other
ΓοχίςοΙοgy	receptors at 1 uM	receptors at 1 uM	receptors at 1 uM

ND: not determined

r q

n

a

Commonwea

Unive

s i

Selected Publications

- Guo Li, Lindsey C. Aschenbach, Jianyang Chen, Michael P. Cassidy, David L. Stevens, Bichoy H. Gabra, Dana E. Selley, William L. Dewey, Richard B. Westkaemper, Yan Zhang. Design, Synthesis and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as Mu Opioid Receptor Selective Antagonists. J. Med. Chem. 2009, 52, 1416-27. PMID: 19199782. PMCID: PMC2880636.
- Yunyun Yuan, Guo Li, Hengjun He, David L. Stevens, Patrick Kozak, Krista L. Scoggins, Pallabi Mitra, Phillip M. Gerk, Dana E. Selley, William L. Dewey, Yan Zhang. Identification of 62- and 62-N-Heterocyclic Substituted Naltrexamine Derivatives as Novel Leads to Development of Mu Opioid Receptor Selective Antagonists. ACS Chem. Neurosci. 2011, 2 (7), 346–351. PMCID: PMC3369747.
- Yan Zhang, Amanda Braithwaite, Yunyun Yuan, John M. Streicher, Edward J. Bilsky. Behavioral and Cellular Pharmacology Characterization of 17-cyclopropylmethyl-3,14 β -dihydroxy-4,5 α -epoxy-6 α -(isoquinoline-3' -carboxamido)morphinan (NAQ) as a Mu Opioid Receptor Selective Ligand. European J. Pharmacology, 2014, 736, 124-130. PMID: 24815322. PMCID: PMC4073486.
- Ahmad A. Altarifi, Yunyun Yuan, Yan Zhang, Dana E. Selley, S. Stevens Negus. Effects of the Novel, Selective and Low-Efficacy Mu Opioid Receptor Ligand NAQ on Intracranial Self-Stimulation in Rats. Psychopharmacology (Berl). 2015, 232, 815-24. PMID: 25178814. PMCID: PMC4310756.
- Justin N. Siemian, Samuel Obeng, Yan Zhang, Yanan Zhang, Jun-Xu Li. Antinociceptive interactions between the imidazoline I2 receptor agonist 2-BFI and opioids in rats: role of efficacy at the mu opioid receptor. J. Pharm. Expt. Ther. 2016 357(3):509-19. PMID: 27056847.
- Samuel Obeng, Yunyun Yuan, Abdulmajeed Jali, Dana E. Selley, Yan Zhang. In vitro and in vivo functional profile characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3carboxamido)morphinan (NAQ) as a low efficacy mu opioid receptor modulator. European Journal of Pharmacology. 2018, 827, 32-40. PMID: 29530590. PMCID: PMC5890425.
- Jeremy C. Cornelissen, Samuel Obeng, Kenner C. Rice, Yan Zhang, S. Stevens Negus, Matthew L. Banks. Application of Receptor Theory to the Design and Use of Fixed-Proportion Mu-Opioid Agonist and Antagonist Mixtures in Rhesus Monkeys. J. Pharmacol. Exp. Ther. 2018, 365(1), 37-47. PMID: 29330156. PMCID: PMC5830633.
- Samuel Obeng, Huiqun Wang, Abdulmajeed Jali, David L. Stevens, Hamid I. Akbarali, William L. Dewey, Dana E. Selley, Yan Zhang. Structure activity relationship studies of 6β- and 6αindolylacetamidonaltrexamine derivatives as bitopic mu opioid receptor modulators and elaboration of 'message-address concept' to comprehend their functional conversion. ACS Chemical Neuroscience, Allostery special issue, 2018. doi: 10.1021/acschemneuro.8b00349. [Epub ahead of print]. PMID: 30156823.